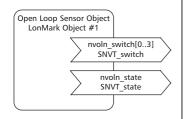
LON digital input modules

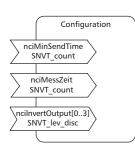
LDE 4 IP65 24 V AC/DC, 4 contact inputs

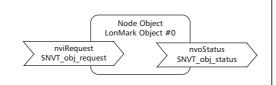
Part Number 110 411 13 19-IP **Dimensions - IP65 housing** Use LON module with 4 digital inputs. Suitable to record the status of potential free switches, e.g. electronic limit switches at vent valves or auxiliary contacts at power contactors. **Functional description** Depending on the position of the jumper J the inputs can be used as contact and voltage inputs (A1, 24 V AC/DC, Jumper J - A2, factory setting) or with actuation to GND (A2, Jumper J - A1). In a LON installation these data points can be bound individually or as a whole. LON interface FTT10A free topology transceiver 3120, 2k EEPROM neuron data format standard network variables (SNVT) Wiring transmission rate 78 kBit/s max. length (see page 7) 2700 m / 64 nodes line topology bus NET B 500 m / 64 nodes free topology NET A cabling twisted pair NET B **Application software** NET A XIF and NXE files are available as downloads under supp www.btr-electronic-systems.de. A2 **Technical data** A1 A2 dimensions w*h*l A1 Housing 159 x 41.5 x 120 mm 300 g weight mounting position any any mounting position Wiring Diagram mounting directly to a smooth surface 8 cable entries for M12 and M16 fittings material housing ASA+ polycarbonate terminal blocks polyamide A10-power A2 O- supply cover polycarbonate Neuron Typ 3120 FE5 NET 10- LON-BUS Interface NET 20- FTT10-A type of protection (DIN 40050) IP65 Terminal blocks 1.5 mm² pluggable supply and bus jumper plug (included to packing) digital inputs 2.5 mm² switch LED operating voltage range 20 ... 28 V AC/DC Supply current consumption 63 mA (AC) / 21 mA (DC) A10 0 0 100 % duty cycle factory setting recovery time 550 ms -5 °C ... +55 °C **Temperature range** operation storage -20 °C ... +70 °C **Protective circuitry** operating voltage polarity reversal protection green LED Display operation function yellow LED for status (service) input status yellow LEDs

BTRNETCOM



LON digital input modules


Description of the LonMark objects and network variables


LDE 4 LDE 4 IP65

DigitalIn Object

Configuration Variables

DigitalIn Object

Node Object

The Node Object monitors and controls the functions of the different objects in the device. It supports the basic functions Object-Status and Object-Request required by LonMark.

Application Objects

The objects contain the functions statzs record of the digital inputs and data exchange.

nvoln switch[0..3] (index 2..5) SNVT type SNVT_switch Status of the inputs. The output variables are issued after a change Function of the input status, at the end of the preset obligatory update time (nciMinSendTime) or after a module reset. Closed contact nvoln switch[0..3] = 100.0 1 nvoln switch[0..3] = 0.00Open contact nvoln_state (index 6) SNVT type SNVT state Function Status of the inputs. The output variable is issued after a change of the input status, at the end of the preset obligatory update time (nciMinSendTime) or after a module reset. Assignment nvoln state.bit0 = input 1 ... nvoln state.bit3 = input 4 Closed contact nvoln_state.bit[0..3] = 1 Open contact nvoln state.bit[0..3] = 0 **Configuration Variables** nciMinSendTime (index 7) SNVT type SNVT count Function The output variables nvoln switch and nvoln state are issued after a preset period of time even without a change of the input status. Time settings 0 timer turned off 1...60 timer period in seconds (factory setting 0) nciMessZeit (measuring time) (index 8) SNVT type SNVT_count Function The status of the inputs are scanned within the preset time. Then the output variables nvoln_switch and nvoln_state are set and issued at the end of the preset update time (nciMinSendTime). Time settings 0 timer turned off 120 ... 60,000 timer period in ms (factory setting 0) nciInvertOutput[0..3] (index 9..12) SNVT type SNVT_lev_disc inversion of the input signal Function ncilnvertOutput[0..3] = ST_ON open input contact; nvoln_switch and/or nvoln_state = set ncilnvertOutput[0..3] = ST_OFF closed input contact; nvoln_switch and/or nvoln_state = set

